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1 Introduction 

In the following note some basic results of Linear klgebra are applied to  
obtain the projections of beam distributions. Projections of the ellipsoid 
which contains the beam are considered first and then Gaussian 
distributions are treated. 

2 The Beam Ellipsoid 

Let 20, al,, yo, y; be the horizontal and vertical positions and angles (or 
canonical momenta) of a beam particle with respect to  the reference 
trajectory at a point so along the trajectory. Then the positions, x and y, 
and angles, x' and y', of the particle at the point s along the trajectory are 
given by 

where 

Z =  

Z = TZo, 

YO 
Y:, 2 i 

and T is the four-by-four transfer matrix between SO and s. The matrix T 
is symplectic and therefore has unit determinant. 

Now suppose we define an ellipsoid at  SO by 

ZAEFIZo = E (3) 
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where EO1 is a four-by-four real, symmetric, positive-definite matrix with 
unit determinant. (We use a t to  denote the transpose of a vector or 
matrix.) Then it is easy to show that the ellipsoid at so is transformed into 
another ellipsoid at  s. Using ZO = T-IZ in (3) we find 

ZtE-'Z = E ,  (4) 

where 
E = T E ~ T ~ .  (5) 

Equation (4) defines an ellipsoid provided the matrix E-l is symmetric 
and positive-definite. Since Eo is symmetric (EL = Eo) we have 

E* = T E ~ T ~  = T E ~ T +  = E (6) 

and E-' is therefore symmetric. Now a real and symmetric matrix, A, is 
positive-definite if the quadratic form ZtAZ > 0 for every Z # 0. To show 
that E-' is positive-definite, consider 

Z ~ E - ~ Z  = Z ~ T ~ E - ~ T Z ~  = Z L E ~ ~ Z ~ .  (7) 

Since Z!Ei1Zo > 0 for all ZO # 0, and since Z = 0 if and only if Zo = 0, it  
follows that ZtE-IZ > 0 for all Z # 0. Therefore E-' is positive-definite, 
and the ellipsoid defined by Eo is transformed into another ellipsoid 
defined by E in going from SO to s. We note that since JTJ = 1, 

and the volume enclosed by the ellipsoid is therefore conserved. 

Now since ZtE-IZ < E if and only if ZLEi'Zo < E ,  we see that any 
particle inside (outside) the ellipsoid (3) at so will be inside (outside) the 
ellipsoid (4) at s. Thus if we define the beam ellipsoid to be the smallest 
ellipsoid which contains the beam particles at so, then the evolution of this 
ellipsoid provides a convenient way of keeping track of the motion of the 
beam without having to track each particle individually. 

3 Maximum Extent in each Dimension 

Let us now determine the maximum extent, in each dimension, of the 
ellipsoid defined by (4). Since the matrix, E, is real and symmetric there 
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exists an orthogonal transformation (OOt = I) which diagonalizes E. Thus 

and 

Since E is positive-definite, its eigenvalues (the matrix elements e ; )  are all 
positive, and it follows that 

E = o+,o, E-I = Ote-lO. (10) 

Eii = E O j i e j k o k ;  = E ( 0 , ; ) ’ e k  > 0, (11) 
j , ,  k 

i.e. the diagonal elements of E are all positive. Now let 

Y = O Z ,  Z = O f Y .  (12) 

Then we have 

E = Z ~ E - ~ Z  = Y ~ O E - ~ O ~ Y  = y t e - l y  (13) 

and the equation of the ellipsoid in the transformed coordinates, E, is 

I t  follows that the maximum extent of each coordinate is given by 

%2 5 Ee; .  (15) 

To obtain the maximum extent of the coordinate Z;, we write 

Then making use of the Schwarz inequality [l] we have 

and using (11) and (14) in (17) we have 

Z! 5 EE;;. 
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e 

Thus the diagonal elements of E give the maximum extent in each 
dimension of the ellipsoid defined by ZtE-IZ  = E .  

The equality in (17) and (18) holds if and only if Y j / f i  = XOj;&, 
which is true if and only if 

Yj = X 0 j ; e j .  (19) 

Using this equation in (14) we find 

E = X2 x ( O j ; ) 2 e j  = X2E;;, 
j 

and therefore 
X2 = E/E;; .  

Then using (12), (19) and (10) we find 

and therefore 

Thus when 2: = EE;; the other components of Z are given by the second 
of equations (23). 

4 Projections of the Ellipsoid 

We can learn more about the size and shape of the ellipsoid by examining 
its projections onto the (2, d ) ,  (y, y') and (2, y) planes. To obtain the 
projections we partition the matricies in equations (1) and (5) into 
two-by-two matricies. A discussion of the algebra of partitioned matricies 
may be found in Refs. [2, 31. Introducing the notation 
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where Fo, GO, CO, F, G, C, M, N, m, n are two-by-two matricies, the 
equation E = TEoTt becomes 

F = MFoMt + nGont + nCtMt + MCont, 

G = NGoNt + mFomi. + NCimt + mCoNt, 

C = MCoNi. + nCimt + MFomt + nGoNt, 

(27) 

(28) 

(29) 

and Z = TZo becomes 

Now consider the ellipsoid ZiECIZo = E. To find the projection onto the 
20, a$ plane we seek a transformation, T, from coordinates given by XO, 
Yo to new coordinates given by X, Y such that X = XO and the equation 
for the transformed ellipsoid is of the form 

XtF-'X + YtG-lY = E ,  (31) 

where F-l and G-l are positive-definite. We obtain such a transformation 
if we choose 

M = N = I ,  n = o ,  ~=-c;F;' .  (32) 

Then we have 

T = (  m I  I O ) ,  T - ' = (  -m I O )  I (33) 

and the equation E = TEoTt becomes 

F = Fo, C = 0, G = Go - C/,Fi1Co. (34) 

Thus 

and the equation for the transformed ellipsoid is 

ZtE-'Z = XiFc'Xo + YtG-lY = E. (36) 
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where 
Y = Yo - CLFtlXo. (37) 

Now since EO1 is positive-definite and since T-l exists, the matrix E-' is 
positive-definite. The quadratic forms XLFilXo and Yt G-lY are 
therefore positive-definite and it follows that 

X!Fi1Xo 5 E. (38) 

we obtain 
t -1 XOfO xo 5 ED, If01 = 1 

which defines an elliptical region of area TED.  This region is the projection 
of the ellipsoid ZLEr1Zo = E onto the 20, a$, plane. The boundry of this 
region is given by 

XiFilXo = E. 

For these points we have 

YfG-lY = 0, Y = 0,  

and therefore 
Yo = CLFg1Xo. 

Thus equations ( 1) and (43) give the points on the surface of 
which project onto the boundry of the 20, 2; projection. 

(43) 
he ellipsoid 

The argument given above may be extended to  higher dimensions by 
appropriately partitioning the matricies Eo, E, and T. For the case of a 
six-dimensional ellipsoid, the projection onto the 20, 2; plane can be 
obtained by partitioning the matricies as follows: 

and 
{ E13 E23 1 1 E33 E34 E35 E36 

E43 E44 E45 E46 

E53 E54 E 5 5  E56 

E14 E24 

E15 E25 

\ E16 E26 ) [ E63 E64 E65 E66 ) 
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with similar partitions for Eo and T. Similarly, if we let 

F =  (Ell), c =  ( E12 E13 E14 E15 E16 ) (46) 

and 
E 2 2  E23 E24  E 2 5  E26 

ci = [ ii 1 , = [ E32 E33 E34 E35 E361 (47) 
E42  E43 E44 E 4 5  E46 

E 5 2  E53 E54 E55 E56 

E16 E62 E63 E 6 4  E65 E66 

with similar partitions for Eo and T, then the projection of the ellipsoid 
onto the zo a x i s  is given by equations (38-43) with XO = 20 and 
Fo = (Eo)ll = I). This provides an alternate proof of the results of Section 
3. 
Generalizing the preceeding arguments we h d  that the projection of the 
ellipsoid, ZtE-lZ = E ,  on the Z,, 2, plane is the elliptical region 

Xtf-lX 5 ED, (48) 

where 

and the matrix elements off  are 

5 Projections of the Gaussian Distribution 

Now consider the four-dimensional Gaussian distribution, 

(52) 
1 

where 
WO = Z;Ei1Zo, [Eo] = 1. 

Let us first show that the normalization of the distribution is such that 

N = ~ ( Z O )  dzod~bd~ody ;  = 1. (53) s 
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Transforming to coordinates, Y = OZo, which diagonalize Eo as in Section 
3, we have 

(54) e- wo d Y1 d Y2 dY3d Y4 
N =  (a2/ 

(55) 
1 

where 
WO = - C y l z / e ; ,  

2 E  ; 

and 
e1e2e3e4 = \Eo\ = 1. 

Then using the integral 

we obtain 

N =  (2 iJ2  - (&Z)'d==l. (58) 

Now using the results of Section 4 we can readily obtain the projections of 
the distribution onto the (20, zb), (yo, yh) and (zo, yo) planes. The 
projection onto the (20, zb) plane is, by definition, 

and in terms of the transformed coordinates, 

we have 
wo=wz+w, 

(62) 

(63) 

1 1 
- . 2 E  2 E  

1 
- 2 E  

and G is given by (34). Then, since the Jacobian of the transformation 
from Yo to Y is equal to one, the projection becomes 

where 
W - - XIF-lX = - X:Fi1Xo, 

W - - Y t G - l Y ,  

P(z0, zb) = Nze-wa (64) 
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where 

Now, one does not have to  do the integration indicated in (65) to obtain 
N,, for its value also follows from the requirement that 

J ~ ( z o ,  zb) dzodzb = p( zO) dzodzbdyodyh = 1. I (66) 

fo = Fo/D,  D = IFOI”~, (67) 

e-Wxdzodxb = 2aeD (68) 

Thus, defining 

and! transforming to coordinates which diagonalize fo, we find that 

and therefore 

Generalizing the argument we find that the projection of the Gaussian 
distribution 

on the Z,, Zn plane is given by 

where 

and the matrix elements off are 

Similarly, the projection on the 2, axis is given by 

(72) 

(73) 

where D = E,,. 
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